Skip to content


Principles of air quality management

Air contains many different types of gases and particles. Good air quality is a key determinant of human health so emissions to air that are known to have detrimental health impacts are all closely regulated. However, air pollution levels and links to respiratory illness continue to be a major UK environmental concern.

Indoor air quality is affected by human activities, heating and ventilation systems, positioning of air intakes and extracts and the materials used in a building fit out. It can also be adversely affected by gases entering the building from the ground, notably radon and, in some circumstances landfill gas and other contaminants. In Hertfordshire (and much of the UK), the primary cause of external air quality problems is road traffic.

Development often pays little attention to enhancing internal air quality, other than to comply with mandatory legislation.

There are 3  basic principles to maintaining/improving air quality in construction and development:

Minimise dust and other emissions during construction activities

Construction and demolition activities can generate significant air quality problems; not only emissions arising from site activity, but also emissions arising from construction vehicles.

Construction site dust typically comprises small particles such as soot and cement and larger particles such as grit, sand and wood dust; many of which are known to have detrimental health effects.

In addition to generating significant vehicular emissions, construction traffic also contributes to local congestion and can generate nuisance impacts.

Active management of site activities and vehicular movements should be a priority in all development.

Design out known pollutants

A number of commonplace products are known to contain airborne pollutants. Examples of these include some types of synthetic floor finishes and timber composite products.

Numerous alternatives are available that perform similarly or better in terms of aesthetic quality, functionality and cost. Consequently, designing out of known pollutants can be readily achieved.

Similarly, well designed building services and the adoption of sufficient levels of ventilation can alleviate many air quality problems. For example, specifying low polluting boilers.

Manage atmospheric emissions during building operation

In addition to emitting carbon dioxide emissions, buildings and operations within buildings also generate a number of other pollutants. For example, refrigerants that escape from air conditioning systems, NOx emissions from boilers and domestic hobs, or aerosol cleaning products.

Effective reduction of these emissions is best managed by designing out the emissions, e.g. installing a refrigerant recovery system, specifying a low NOx boiler or changing cleaning products; however regular maintenance and installation of a building management system that for example, identifies peaks in emissions can also help.

Benefits of air quality management

The selection of an appropriate range of air quality management solutions can deliver significant benefits.

Social and economic benefits

  • Less respiratory and other sick building/stress related illness.
  • Less sick days taken by workforce/population (and subsequent higher productivity).
  • Less need for healthcare expenditure.

Environmental benefits

  • Improved air quality.
  • Better management of resources.
  • Less emissions to air, often having risen from inefficient equipment.
  • Increased amenity value of development.

Typical practice

air_typicalpractice

A: Openable windows/air intakes located adjacent to sources of external pollution.

B: Synthetic carpets can release toxins with VOCs.
C: Furnishing and finishing products such as paints release VOCs.
D: NOx emissions from boilers.
E: Office equipment, such as photocopiers and printers release VOCs.

Good practice

air_goodpractice

A: Houseplants can improve air quality.
B: Building is sealed on any side adjacent to sources of external air pollution, including traffic, exhaust from porcesses or building services, etc.
C: Specification of low solvent content fixtures and fittings reduce the levels of VOCs, for example using water based paints and varnishes and avoiding chipboard and particle board in furniture.
D: Openable windows in orientations away from pollution.
E: Reduced NOX emissions from high efficiency boilers.
F: Large scale office equipment separate from main working area and appropriately ventilated.
G: All internal areas adequately ventilate.

Causes and consequences of poor internal air quality

Humidity 

Inadequate levels of humidity, whether too high or too low, can compromise the internal air quality of a building. Humidity levels are primarily influenced by the suitability of the ventilation. Humidity levels that are either too high or too low are easily identified.

Extreme levels have negative impacts on the health of building occupants and the life span of internal fittings. Negative health effects of an internal dry atmosphere include dry skin and eyes.

Effects on the building interior include:

  • Dulling of polished surfaces.
  • Damage to wooden furniture and fittings.

Negative health effects of a moist atmosphere include:

  • Respiratory illness due to increased levels of mould spores and dust mites which thrive in moist environments.

Effects on building interiors are greater than those for a dry environment. These include:

  • Mould and mildew.
  • Damp or wet walls.
  • Damaged wallpaper and plaster boards.
  • Warped doors and windows.
  • Condensation.
  • Less efficient heating plant.

Odour

Particular types of service/retail outlet such as hairdressing salons, dry cleaning outlets, and restaurants can release overpowering smells which often cause nuisance impact to neighbouring residents and workers.

Dust

Dust is generated by many daily activities, including the construction process. Activities such as demolition, mixing, blasting, cutting, grinding, etc. can all generate high levels of dust, if best practice attenuation measures are not adopted. Dust is a well known cause of respiratory irritation. Substantial amounts of dust in an operational building can present a significant problem for allergy sufferers.

Asbestos

It is estimated that around 5.5m UK buildings contain asbestos, which before the health impacts were known, was considered to be the perfect fire retardant material. Asbestos can therefore be found in many existing building components including cladding, insulation, flue-pipes and storage heaters.

Asbestos poses a very high risk to human health, as it is carcinogenic and via inhalation, can lead to lung, chest and abdominal cancer. At least 3500 people in the UK die each year from mesothelioma and asbestos related lung cancer as a result of past exposure to asbestos, and such figures are expected to rise within the next decade.

Asbestos has long been prohibited from any building works and asbestos management and removal is highly regulated. More information can be found on the Healthy and Safety Executive website.

Volatile organic compounds

Volatile Organic Compounds (VOCs) are air borne substances that are released from materials and furnishings such as plastics and MDF, finishing products such as paints and varnishes and office equipment such as photocopiers. External sources of VOCs include motor vehicles and aircraft. Known human health hazards arising from inhalation of VOCs include:

  • Breathing difficulties.
  • Eye, skin and throat irritation.
  • Nausea.
  • Allergic reactions.
  • Increased risk of lung disease.

Biological contaminants

These include bacteria, moulds, pollen and viruses, which can occur in stagnant water accumulated in ducts, humidifiers and drains, or water stained ceiling tiles, carpeting or insulation. Other sources of biological contaminants include insects or birds droppings.

Common health impacts include:

  • Coughing.
  • Chest tightness.
  • Chills.
  • Fever.
  • Muscle aches.
  • Various forms of allergic responses.

One particular type of bacteria posing extreme risk is Legionella, which causes Legionnaire’s disease (a fatal form of pneumonia), and Pontiac fever. Legionnaire’s disease develops in poorly maintained and intermittently used water tanks and plant, boilers and pipework. Clear design guidance on how to remove all Legionnaire’s risk from building services is available from the Chartered Institute of Building Services Engineers (CIBSE).

Sick Building Syndrome can be caused by the range of factors explained above, such as airborne pollutants released from buildings, VOCs, low humidity, ozone, dust mite and also glare. Common symptoms include lethargy, stuffy or runny nose, dry throat, headache, eye irritation, chest tightness and dry skin.

Building services

Building services emit a large proportion of major greenhouse gases such as carbon dioxide (CO2), sulphur dioxide (SO2) and nitrous oxide (NO), and various other gases.

Building services account for around 25% of UK annual sulphur dioxide (SO2) and nitrous oxides (NOx) emissions. These two gases contribute to the acidification process, which pollutes soils, watercourses and forestry. Acidification also damages limestone buildings and statues.

In addition to SO2 and NOx, other key air pollutants generated by building services include refrigerants (used in air conditioning). Although refrigerant gases are mostly inert and consequently do not present a threat to human health, they have global warming potential and can also have ozone depletion potential.

This means that when they leak/are accidentally released from air handling units, fan coils and chillers, they contribute significantly to ozone depletion and the greenhouse effect.

Particulates

PM10 are particles that have a diameter of less than 10µm. Road traffic is the primary source of particulates outdoors. Sources of internal particulates include smoking, burning of candles, coal or wood fires and cooking. Health implications arising from the inhalation of these solid substances are:

  • Eye irritation.
  • Nose, throat and respiratory disease.
  • Bronchitis, emphysema and heart disease can be caused when those particles are absorbed into the blood stream.
  • Cancer.

 

 

 

Rate this page

Cookies

Like many other websites, we place small information files called 'cookies' on your computer.

Why do we use cookies?

To remember your settings, for example your language and location. This means you don’t have to keep entering these details when you visit a new page.

To find out how you use the site to help us update and improve it.

How do I change my cookie settings?

You can change the settings of your web browser so that it won’t accept cookies. For more information visit AboutCookies.org.

But, doing this may stop you from using some of the online features and services on this website. 

Cookies we use

Cookies do a lot of different jobs, and we use 2 types of cookies:

Required functionality cookies – these cookies are essential for the website to work.

Performance and feature cookies – these cookies help to improve the performance and feel of this website, for example providing you with personalised services.


Take a look at a list of cookies we use on our website:

NameTypeHow we use itHow long we use the information for

ASP.Net_Sessions

 

Required functionality

An automatic cookie set by our software. 

Just for the time you are on our website.

ServerID

 

Required functionality

An automatic cookie set by our software. 

Just for the time you are on our website.

_ga

Required functionality

To track the effectiveness of our website using Google Analytics. 

2 years

saved-pages

Performance and feature

To save the pages that you visit by clicking the heart at the top of the page. 

1 month

geoPostcode

Performance and feature

This stores your postcode (or partial postcode) when we ask you for your location.

Just for the time you are on our website or 30 days (you choose this).

geoCoordinates

Performance and feature

This stores your location as a pair of latitude / longitude coordinates.

Just for the time you are on our website or 30 days (you choose this).

reckonerName-history

Performance and feature

This keeps a history of all answers submitted to the ready reckoner.

This is set in the control for each ready reckoner. If you haven't interacted with the ready reckoner for the set amount of days, the cookies are deleted.

reckonerName-content

Performance and feature

This keeps a history of what content cards are clicked on when using the ready reckoner.

This is set in the control for each ready reckoner. If you haven't interacted with the ready reckoner for the set amount of days, the cookies are deleted.

SQ_SYSTEM_SESSION

Required functionality

This used to track user sessions on forms hosted on eservices.hertfordshire.gov.uk

Just for the time you are on our website.


Third party cookies

There are links and content from other sites and services on our website. These sites and services set their own cookies.

Below are a list of cookies that the other sites and services use:

Service namePurposeMore information

Google analytics (_utma/b/c/z)

These are used to compile reports for us on how people use this site.

Cookies of the same names are also used for the same purpose by other websites such as Building FuturesCountryside Management Service and Hertfordshire LIS.

Visit the Google Analytics website for more information about the cookies they use.

You can prevent data from being collected and used by Google Analytics by installing Google's Opt-out Browser Add-on.

Google Translation - googtrans

This cookie is used to remember which language to translate each page into if you have chosen to do so.

It expires at the end of your browser session.

Bing

We use a Bing cookie to track the success of our marketing campaigns and make them more efficient.

Visit Bing to find out more about their cookies.

Google

We use a Google cookie to track the success of our marketing campaigns and make them more efficient.

Visit Google to find out more about their cookies.

Facebook

We have a number of presences on Facebook, which we may link to. Facebook may set some of its own cookies if you follow these links.

Visit Facebook to find out more about their cookies.

Twitter

We have a number of presences and feeds on Twitter, which you may wish to follow or read from this website. Twitter may set some of its own cookies.

Visit Twitter to find out more about their cookies.

YouTube

We have a YouTube channel, which we may link to. YouTube may set some of its own cookies if you follow those links.

Visit YouTube to find out more about their cookies.

Netloan

This ASP.NET_Sessionid cookie is essential for the Netloan secure online payments website to work, and is set when you arrive to the site. This cookie is deleted when you close your browser.

 

HotJar

This session cookie is set to let Hotjar know whether that visitor is included in the sample which is used to generate funnels.

Visit HotJar to find out more about their cookies.

Siteimprove

These cookies are set to help us report on how people are using the site so we can improve it.

Visit Siteimprove to learn more about their cookies.